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Background. Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated
illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these be-
tween-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses,
such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to dif-
ferentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on rest-
ing-state functional connectivity (rsFC).

Method. We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by
age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default
mode network, the salience network and the central executive network.

Results. The SVM applied to the rsFC within the salience network distinguished the FES from the control participants
with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not
significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within
the default mode or the central executive networks did not yield classification accuracies above chance level.

Conclusions. Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the
course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or med-
ications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/
salience network in the pathophysiology of FES.
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Introduction

Schizophrenia is often a chronic, life-long conditionwith
an early onset (Rabinowitz et al. 2007; Andreasen et al.
2011). It accounts for 1.1%of the total disability-adjusted
life years (DALYs) and 2.8% of years lived with disabil-
ity (Levav & Rutz, 2002) and is the eighth leading cause
of DALYs worldwide in the 15–44 years age group.

Delayed diagnosis may result in brain structural/func-
tional alterations (Penttilä et al. 2010; Guo et al. 2013,
2015), which complicate the treatment and may result
in poor cognitive and social functioning (Malla et al.
2011). Therefore, the study of participants during their
first episode of schizophrenia spectrum disorders
(FES) is of high relevance, as it could improve early diag-
nosis. By limiting the effects of illness burden andmedi-
cation exposure (Lieberman et al. 2001; Smieskova et al.
2009; Ho et al. 2011), this approach could also help iden-
tify biological signatures of the illness.

Brain imaging provides an interesting tool for the
study of psychiatric disorders. Yet, the diagnostic

* Address for correspondence: T. Hajek, M.D., Ph.D., Dalhousie
University, Department of Psychiatry, QEII HSC, A.J. Lane Bldg, Room
3093, 5909 Veteran’s Memorial Lane, Halifax, NS B3H 2E2, Canada.

(Email: tomas.hajek@dal.ca)

Psychological Medicine, Page 1 of 10. © Cambridge University Press 2016
doi:10.1017/S0033291716000878

ORIGINAL ARTICLE



promise of neuroimaging in psychiatry has not yet been
fully realized. Themain reasons for this pertain to clinic-
al heterogeneity and low sensitivity/specificity of brain
imaging findings. The former issue can be addressed
by studying more homogeneous patient populations,
such as participants at the early stages of the illness.
The later problem can be resolved by novel methods of
magnetic resonance imaging (MRI) data analysis, such
as machine learning (ML). Unlike conventional univari-
ate methods, which yield significant results on a group
level, multivariate ML classifiers are sensitive enough
to accurately classify individual subjects (Haller et al.
2014; Sundermann et al. 2014, Koutsouleris et al. 2015).
Moreover, multivariate patterns of brain changes, such
as those detected by ML, may be more characteristic of
psychiatric disorders (Davatzikos et al. 2005). Thus, ML
may help bring neuroimaging from the bench to the bed-
side (Hajek et al. 2015).

Schizophrenia has been associatedwith aberrant func-
tional connectivity (FC) within and between the default
mode network (DMN), the central executive network
(CEN) and the salience network (SN) (Palaniyappan
et al. 2013; Manoliu et al. 2014; Nekovarova et al. 2014;
Spaniel et al. 2016). Thus we investigated whether pat-
terns of resting-state FC (rsFC), within these networks,
would allowus todifferentiate healthy controls frompar-
ticipants at the early stages of schizophrenia.

ML applied to resting-state functional MRI (rsfMRI)
was successfully used to classify patients with an
established illness (Kambeitz et al. 2015). However, to
the best of our knowledge, this is the first study to
use rsFC to differentiate participants with a FES from
healthy controls. In addition, we compared the results
obtained by ML with those derived from traditional
between-group FC analyses.

Method

Study design

We recruited participants through the Early-Stage
Schizophrenia Outcome study (ESO), a prospective
trial of FES subjects, conducted in Prague and the
Central Bohemia areas (Melicher et al. 2015). The
study was carried out in accordance with the latest ver-
sion of the Declaration of Helsinki. A written informed
consent was obtained from all of the subjects and the
local ethics committee approved the protocol.

Patients with FES

We recruited patients hospitalized at the Bohnice
Psychiatric Hospital, Prague. The inclusion criteria
were: (1) the diagnosis of schizophrenia or the diagnosis
of an acute polymorphic psychotic disorder, as made
by a psychiatrist, according to the International

Classification of Diseases-10 criteria; (2) the first episode
of psychotic illness; (3) the duration of untreated psych-
osis 424 months. Any patients with psychotic mood
disorders (including schizo-affective disorder, bipolar
disorder, and unipolar depressionwith psychotic symp-
toms) were excluded from the study. All of the patients
were treated with antipsychotic drugs at the time of
the MRI scanning. We rated the symptom severity
using the Positive and Negative Syndrome Scale
(PANSS) (Kay et al. 1987).

TheMRI scanningwas performed during the first hos-
pitalization, as soon as the patients were able to under-
stand the purpose of the study and undergo the fMRI
protocol. As participants were typically hospitalized
shortly after developing symptoms, some of them did
not meet the duration criteria for schizophrenia at the
time of scanning. These patients received the working
diagnosis of acute polymorphic psychotic disorder.

Healthy controls

The healthy control subjects were recruited via an ad-
vertisement from a similar sociodemographic back-
ground and were matched to FES participants by age
and sex on an individual basis. The main exclusion cri-
teria for the control subjects were a personal lifetime
history of any psychiatric disorder, or any substance
abuse, established by the Mini International
Neuropsychiatric Interview (M.I.N.I.) (Lecrubier et al.
1997). We also excluded any family history of a psychi-
atric illness in first- or second-degree relatives (see
Table 1 for details).

Further exclusion criteria, for both the patients and
the healthy controls, included current neurological dis-
orders, a lifetime history of seizures, or a head injury
with altered consciousness, an intracranial hemorrhage,
history of mental retardation, substance dependence,
and any contraindications for MRI scanning.

fMRI data acquisition

The data were acquired by a 3 T Siemens Trio MRI
scanner (Germany) equipped with a standard head
coil. For the fMRI data pre-processing, the subjects
were scanned using a structural T1-weighted three-
dimensional MPRAGE sequence [repetition time (TR)
2300 ms, echo time (TE) 4.63 ms, bandwidth 130 Hz/
pixel, field of view (FOV) 256 × 256 mm, matrix 256 ×
256, 160–224 contiguous sagittal slices, a voxel size of
1 × 1 × 1 mm3, GRAPPA, and Acceleration Factor 2].
Functional images sensitive to the blood oxygen level-
dependent (BOLD) contrast were measured with a gra-
dient echo echo-planar sequence (GRE-EPI, TR = 2000
ms, TE = 30 ms, flip angle 90°, bandwidth 2232 Hz/
pixel, without parallel acceleration, FOV = 192 mm ×
144 mm, matrix size 64 × 48, a voxel size of 3 × 3 × 3
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mm3, each volume with 35 axial slices without an
inter-slice gap, and a total of 400 volumes).

fMRI data processing

Functional/structural data were pre-processed and
analysed using tools implemented in the MATLAB
7.14 (R2012a) software. Slice-timing, realignment, re-
gression of nuisance covariates (white matter and cere-
brospinal fluid signal, voxel specific head motion, mean
signal), spatial normalization and smoothing of the func-
tional images, as well as spatial normalization of the
structural T1 images, were performed by an SPM8-Data
Processing Based Toolbox Assistant for the
Resting-fMRI (DPARSF) (Chao-Gan & Yu-Feng, 2010),
and the Resting-State fMRI Data Analysis Toolkit
(REST) (Song et al. 2011). The images were smoothed

with an 8 × 8 × 8 Gaussian kernel. We applied temporal
filtering over the frequency band of 0.008–0.09 Hz.

FC analysis

rsFC for all of the subjects was calculated between pre-
selected regions of interest (ROIs) and the voxels in the
rest of the brain (seed-based connectivity), using pre-
processing pipelines which are well established and
often used in the field (i.e. Craddock et al. 2009;
Alonso-Solís et al. 2012; Venkataraman et al. 2012).
We selected three ROIs, which correspond to the
three networks of interest, i.e. posterior cingulate
gyrus for the DMN, dorsolateral prefrontal cortex
(DLPFC), as represented by the middle frontal gyrus
for the CEN and anterior insula for the SN. The poster-
ior cingulate gyrus and the DLPFC were selected from
the Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al. 2002). This atlas does not pro-
vide parcellation of insula, which we obtained from
Freesurfer (sulcus circular insulae) (Fischl et al. 2004;
Sridharan et al. 2008; Destrieux et al. 2010; Menon &
Uddin, 2010; Palaniyappan et al. 2013). As patients
with established schizophrenia as well as those with
FES show reduced asymmetry of rsFC, we used ROIs
from both sides as seeds in each model (Damoiseaux
et al. 2006; Swanson et al. 2011; Cabral et al. 2014;
Guo et al. 2014). Thus, for each subject, we calculated
three connectivity maps, including connectivity be-
tween: (1) bilateral anterior insula; (2) bilateral poster-
ior cingulate; (3) bilateral middle frontal gyrus and the
rest of the brain. Correlation coefficients were trans-
formed into Z-scores by Fisher’s transformation.
These first-level, individual subject connectivity maps
were subjected to ML; see the support vector machines
(SVM) classification paragraph below.

The second-level FC analysis was performed by the
SPM8-Data Processing Based Toolbox Assistant. The dif-
ferences in the seed-based FC between the patients and
the controls were tested using a two-sample t test. The
results were family-wise error corrected with a signifi-
cance threshold of p < 0.05 on a cluster level.Only clusters
exceeding 20 voxels were considered significant. In order
to compare the uncorrected differences in the seed-based
FCwith theweight distribution obtainedby the SVM,we
performed a t test on an uncorrected level, with a cluster
level of p = 0.001.

SVM classification

We applied a linear kernel support-vector classifier
(SVM) implemented in the PRONTO toolbox v 1.1
(Schrouff et al. 2013) to the individual subject FC
maps. We estimated three separate SVM classification
models (one for each of the three ROIs corresponding
to the three pre-selected resting-state networks). In

Table 1. Demographic and clinical characteristics of the
participants

Controls
(n = 63)

Patients
(n = 63) Statistics

Sex, n female
(% female)

24 (38) 24 (38) χ2 = 0, df = 1,
p = 1

Mean age, years (S.D.) 28.1 (6.3) 28.8 (6.2) t = 0.61,
df = 124,
p = 0.54

Diagnosis, n (%)
Schizophrenia N.A. 37 (58.7)
Acute polymorphic
psychotic disorder

N.A. 26 (41.3)a

Duration of illness,
months
Mean N.A. 2b N.A.
Median
(interquartile range)

N.A. 2 (0–24)b N.A.

Median antipsychotic
dose at the time of
scanning, mg
chlorpromazine
equivalents
(interquartile range)

N.A. 375 (289.5) N.A.

Mean PANSS score
(S.D.)
Positive N.A. 16.9 (6.7) N.A.
Negative N.A. 16.9 (6.4) N.A.
General N.A. 36.3 (9.2) N.A.
Total N.A. 70.1 (17.7) N.A.

df, Degrees of freedom; S.D., standard deviation; N.A., not
applicable; PANSS, Positive and Negative Syndrome Scale.

a A total of 13 patients received the working diagnosis of
acute polymorphic psychotic disorder, because they did not
meet the duration criteria for schizophrenia at the time of
scanning.

b Data missing for six patients.
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order to remove zero voxels, all normalized brains
were extracted using a BET tool implemented in the
FSL package (Smith et al. 2004) and multiplied with
each other in order to generate a common mask. The
ML analyses were restricted to gray matter, by using
a normalized gray matter mask provided by Dr
Wager’s laboratory (http://wagerlab.colorado.edu/
wiki/doku.php/help/core/brain_masks). Each FC map
comprised 52941 voxels (features).

This study utilized a linear kernel SVM, which is less
prone to overfitting than non-linear SVMs. Linear
kernel SVMs have a single parameter, C, that controls
the trade-off between having zero training errors and
allowing misclassifications. Similar to other studies, we
used the default parameter C = 1 (Mourao-Miranda
et al. 2012; Rocha-Rego et al. 2014; Hajek et al. 2015). It
has been shown previously by LaConte et al. (2005) that
the SVM performance for whole-brain classification
does not change for a large range of C values and only
degrades with very small C values. Thus, modifying
theC thresholdwas suggested onlywhen thedimension-
ality of the data is smaller than the number of examples
(e.g. classification based on small ROIs), which was not
the case in our study. Others have suggested that using
a sample-dependent optimization of the parameter C
may improve the performance of the model (Franke
et al. 2010; Nieuwenhuis et al. 2012). However, the
aim of this study was not to optimise the SVM meth-
ods. Our goalwas to reduce themethodological hetero-
geneity and use a simple, ‘out of the box’ approach,
which could be applicable in clinical setting
(Mourao-Miranda et al. 2012).

We performed a leave-one-subject-per-group-out
cross-validation. This means, that on each run, one
subject from each group was assigned to a testing set
and the remaining subjects were assigned to a learning
set. The classification was then performed on the two
subjects in the test set. This was repeated until all of
the subjects had been tested. During the cross-
validation procedure, all of the patients were matched
with the healthy controls according to age and sex. The
classification accuracy was expressed as a total per-
formance on all runs. The statistical significance of
the obtained classification accuracy was tested on
1000 randomly permuted datasets, with a random as-
signment of the group class to the input image. A
resulting null-hypothesis distribution was used to cal-
culate the p value of the accuracies, i.e. the proportion
of the permutations that yielded a greater accuracy
than the accuracy found for the classification models.

Analysis of the effects of medication and symptoms

We attempted to clarify the contribution of medication
and symptoms in several ways: (1) we compared

symptoms and medication dose between correctly
and incorrectly classified subjects using an
independent-sample t test; (2) we used a linear regres-
sion to assess the association between classification ac-
curacy (value of the SVM decision function) and
medication dose [expressed as chlorpromazine (CPZ)
equivalents] or symptoms; (3) we modeled the effects
of covariates on FC. Of note, in ML, removal of con-
founding covariates can violate the basic train/test as-
sumption by introducing the information about the
whole dataset before introducing labels. Therefore cov-
arying for medication dose or symptoms would not be
optimal. To counter this problem, we thus used an-
other ML approach – Gaussian process regression
(GPR). Using the complex GPR model makes few
assumptions about the shape of the possible relation-
ship and is thus more powerful than linear models
(Rasmussen & Williams, 2006; Schrouff et al. 2013).
Using linear model in this case could easily lead to
underfitting in the case of a non-linear relationship.
Therefore, by harvesting as much of the confounding
relationship as possible, the GPR ensures that we ex-
haustively investigated and quantified the contribution
of potential confounding factors to our findings.
Specifically, we performed a GPR in order to estimate
the CPZ dose, or the total PANSS and three subscales
(positive, negative, general), on the day of scanning
from the FC maps (Rasmussen & Williams, 2006). We
only applied these analyses to networks, which differ-
entiated FES from controls above chance level. All ana-
lyses were performed by the PRoNTo Toolbox v.1.1
(Schrouff et al. 2013).

Ethical standards

All procedures contributing to this work comply with
the ethical standards of the relevant national and institu-
tional committees on human experimentation and with
the Helsinki Declaration of 1975, as revised in 2008.

Results

Demographic data

We recruited 63 FES participants who were individual-
ly matched by age and sex to 63 healthy controls, with-
out a personal or a family history of psychiatric
disorder; see Table 1 for a description of the samples.

Support vector classification of FES and control
participants

ML applied to rsFC within the SN differentiated FES
from the control participants with specificity of 71.4%
(p = 0.001), sensitivity of 74.6% (p = 0.001), and balanced
accuracy of 73.0% (p = 0.001, area under the receiver
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operating characteristic curve = 0.80, Fig. 1). In other
words, among the 63 FES subjects, 16 individuals
were mislabeled as being controls, whereas 18 out of
63 controls were incorrectly classified as FES. The
regions which most contributed to the discrimination
of the two groups contained the anterior and posterior
cingulate, precuneus, ventro- and dorsolateral pre-
frontal cortex, angular and supramarginal gyri,
temporo-occipital regions, lingular gyrus, and thal-
amus. The FC within the other networks, i.e. the
DMN and CEN, did not yield classifications above
chance level (see Table 2).

FC analysis – between-group comparisons

There were no significant differences in rsFC between
the FES and the control participants on a corrected
level for either of the seed regions, i.e. the posterior cin-
gulate cortex, dorsolateral prefrontal cortex and anter-
ior insula. We further tested differences in rsFC of the
anterior insula on an uncorrected level. The uncorrect-
ed comparisons yielded between-group connectivity
differences in the bilateral angular and supramarginal
gyri. These regions closely overlapped with the max-
imum weight vectors obtained from the ML classifica-
tion model based on SN connectivity (Fig. 2)

Effects of medication and psychotic symptoms

The correctly classified patients did not differ from the
misclassified ones in PANSS scores [t = 0.08, degrees of
freedom (df) = 61, p = 0.9] or medication dose (t =−1.66,
df = 60, p = 0.1). There was no association between

classification accuracy and CPZ equivalents (r =−0.21,
p = 0.11) or symptoms (r =−0.07, p = 0.58). Lastly, ML
(GPR) was unable to estimate the CPZ dose
(r = 0.22, p = 0.09) or the current symptoms as mea-
sured by the PANSS total scores or subscales
(PANSS-total, r =−0.03, p = 0.81; PANSS-pos, r =−0.09,
p = 0.472; PANSS-neg, r = 0.17, p = 0.184; PANSS-gen,
r =−0.03, p = 0.81) from the rsFC within the SN.

Discussion

In this study, whole-brain rsFC maps of the anterior in-
sula/SN differentiated FES participants from controls
with an above-chance accuracy of 73%, specificity of
71.4% and sensitivity of 74.6%. The classification was
not significantly affected by medication dose, or by
the presence of psychotic symptoms, and thus was
probably based on trait rather than state markers.

Our findings provide a proof of concept that rsfMRI
can be successfully used to differentiate participants
with FES from healthy controls. rsfMRI is particularly
suitable for diagnostic classification (Craddock et al.
2009; Haller et al. 2014). Compared with task-based
fMRI paradigms, the resting-state approach reduces
the amount of bias introduced by task non-adherence.
This is an important advantage in participants with
FES, who tend to have distorted perception and
impaired cognitive functioning. Also the rsFC seed
regions can be selected a priori from pre-defined at-
lases, which makes this approach transferable among
independent groups of subjects. Although it is difficult
to directly compare the results due to the methodo-
logical differences, the classification performance
obtained by using rsFC in this study was comparable
with the sensitivity and specificity obtained from struc-
tural MRI and rsfMRI in established schizophrenia
patients and FES as reported in a recent meta-analysis
by Kambeitz et al. (2015) (sensitivity 76% and specifi-
city 79% for structural MRI, sensitivity 84% and spe-
cificity 77% for rsfMRI). Studies that focused on FES
exclusively have reported accuracies ranging from
65.8 to 94% for structural MRI (Kasparek et al. 2011;
Takayanagi et al. 2011; Borgwardt & Fusar-Poli, 2012;
Pettersson-Yeo et al. 2013; Zanetti et al. 2013).

The anterior insula is a crucial component of the SN.
The disruption of anterior insula and SN connectivity
has been well documented in schizophrenia (White
et al. 2010; Moran et al. 2013; Palaniyappan et al. 2013;
Manoliu et al. 2014; Iwabuchi et al. 2015). Additionally,
a gray matter reduction within the insula has been con-
sistently and robustly reported in meta-analyses of mor-
phometric MRI studies in schizophrenia (Glahn et al.
2008; Ellison-Wright & Bullmore, 2010; Bora et al.
2011; Palaniyappan et al. 2013). However, the specificity
of these changes to schizophrenia is unclear. Recent

Fig. 1. The receiver operating characteristic (ROC) curve for
the classification model was based on functional
connectivity maps of the anterior insula. The ROC curve
shows the sensitivity v. specificity trade-off and the area
under the curve (0.80). True positives = sensitivity; false
positives = 1 – specificity.
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findings suggest that a general mapping exists between
a broad range of psychiatric symptoms and the integ-
rity of an anterior insula-based network across a
wide variety of neuropsychiatric illnesses (Goodkind
et al. 2015).

Although the DMN and CEN exhibit functional ab-
normalities in schizophrenia (Ren et al. 2013; Spaniel
et al. 2016), we did not achieve above-chance classifica-
tions when we focused on connectivity within these
networks. We also did not identify any significant
between-group FC differences in these networks. One
explanation may lie in the dynamics of structural
brain changes during the course of an illness. Some
studies suggest that abnormalities of insular cortex in
psychotic disorders may reflect pre-existing vulner-
ability. Later in the course of illness, the changes sec-
ondary to the illness burden may lead to the
extension of these alterations to other neighboring
structures (Takahashi et al. 2009; Chan et al. 2011).
However, other studies do not support this view of
dynamic pattern changes in brain morphology (Vita
et al. 2012).

Another explanation is that previous findings
reflect clinical heterogeneity vis-à-vis the clinical
course. Recent studies have demonstrated that clas-
sification accuracies are higher in participants with
chronic course of illness, and lower in those with an
episodic illness. Perhaps the presence of patients
who will go on to develop an episodic illness could
have decreased the prediction accuracies for some of
the networks (Mourao-Miranda et al. 2012; Gould
et al. 2014).

It is of note that even the between-group differences
in the anterior insula connectivity did not reach statis-
tical significance. However, on an uncorrected level,
the localization of group differences overlapped with
the regions with a maximum contribution to the clas-
sification using ML. Due to the multivariate nature,
which obviates the need to control for multiple com-
parisons, ML appears to be more sensitive than con-
ventional mass univariate approaches.

This study has the following limitations. A common
problem in ML is overfitting (Whelan & Garavan,
2014). We used a linear-kernel SVM classifier, which

Table 2. Results of the support vector machine classification of patients with a first-episode schizophrenia spectrum disorder and healthy
controls from the whole-brain seed-based functional connectivity mapsa

ROI Sensitivity p Specificity p Balanced accuracy p, Balanced AUCb

Posterior cingulate cortex 54.0 0.292 57.1 0.155 55.6 0.176 0.55
Dorsolateral prefrontal cortex 57.1 0.133 58.7 0.09 57.9 0.072 0.62
Anterior insula 74.6 0.001 71.4 0.001 73.0 0.001 0.80

ROI, Region of interest; AUC, area under receiver operating characteristic curve.
a p Values were calculated from permutation testing with 1000 permutations.
b See Fig. 1 for details.

Fig. 2. Comparison of the regions contributing to the classification based on salience network connectivity obtained by
machine learning (red) with differences between the patients with first episode of schizophrenia-spectrum disorder and
controls in salience network connectivity (white). Differences in functional connectivity between the patients and the controls
were obtained as F-contrast (p = 0.001, cluster-level uncorrected).
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was shown to have a low likelihood of overfitting in
fMRI paradigms (LaConte et al. 2005; Mourao-Miranda
et al. 2012). In addition, two out of three of our models
failed to produce significant results, which makes
overfitting unlikely.

Unlike the healthy controls, all of the patients were
on antipsychotic medication and experienced mild
psychotic symptoms at the time of scanning.
However, there was no significant association between
symptoms or medication dose and classification accur-
acy. Likewise, ML was unable to estimate symptom
levels or medication dose from rsFC data. Last but
not least, there were no significant differences between
the correctly and incorrectly classified subjects in
symptom levels or medication dose. Thus, it is unlikely
that medication or psychotic symptoms markedly con-
tributed to the classification. There are a limited num-
ber of studies focusing on correlations of clinical
symptom severity and/or medication dose with rsFC
in FES. The results differ depending on the regions of
interest. Some studies have found positive as well as
negative correlations of striatal connectivity with
symptom severity that was resolved with treatment
(Sarpal et al. 2015). However, another study reported
no correlations between symptom severity and rsFC
of the DMN (Alonso-Solís et al. 2012).

We were primarily interested in subjects at the early
stages of illness, as this is one of the few ways how
to limit the effects of previous psychotic episodes and
how to minimize exposure to medications or co-
morbid conditions. This approach minimizes the
effects of confounding variables, which could alter
classification accuracy. Consequently, as many of the
participants were hospitalized shortly after developing
symptoms, some of them did not meet the duration cri-
teria for schizophrenia at the time of scanning. These
patients received the working diagnosis of acute poly-
morphic psychotic disorder.

As this is an emerging field, there is no standardiza-
tion of the methods of data pre-processing and
analyses for the ML studies. We do not know exactly
the influence of individual processing steps or selec-
tion of ROI on the outcomes. At the same time, the
SVMs are among the most used ML classifiers in psy-
chiatric neuroimaging (Sundermann et al. 2014).

Consequently, we used SVM with the default para-
meters in order to decrease the methodological hetero-
geneity and to ensure comparability with other studies.
This way, we showed that even a simple ‘out of the
box’, easily applicable classifier with linear (hyper-
plane) decision boundary could correctly distinguish
between patients and controls. For the same reason,
we used standard atlases to select the ROIs, which
are representative of the individual networks. In future
studies, it would be interesting to test other classifiers,

such as random forest or discriminant analyses, or to
focus on different ROIs.

To conclude, this study provides a proof of concept
that ML of seed-based rsFC maps can be utilized for
the diagnostic classification of participants early in
the course of schizophrenia. We were able to discrim-
inate patients with FES from healthy controls with an
accuracy of 73%. Furthermore, our results emphasize
the role of rsFC within the SN in the pathophysiology
of FES. Future studies should attempt to use this ap-
proach in unaffected individuals at a genetic risk of
schizophrenia, should aim to test the specificity of
the results to schizophrenia and might benefit from
novel classification algorithms.
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